

Release Note

Release Date : August 2019

Product Ver. : Civil 2020 (v1.1)

DESIGN OF CIVIL STRUCTURES

Integrated Solution System for Bridge and ivil Engineering

Enhancements

- 1. Maximum Number Limit of Erection Load Cases for Construction Stage Analysis
- 2. Multiple Modulus of Elasticity for Composite Prestressed Girder
- 3. Improvement in Prestressed Composite Bridge Wizard: Non-continuous Precast Beam
- 4. Improvement in Prestressed Composite Bridge Wizard: Diaphragm
- 5. Bilinear Type Spring Stiffness for Surface Spring Support
- 6. Force/Stress Contouring based on Center Value of Plate Elements
- 7. Concurrent Reactions of Moving Load Analysis with respect to Node Local Axis
- 8. Concurrent Forces of Elastic Links and General Links for Moving Load Analysis
- 9. Analysis Filtering of Elastic Links and General Links in Moving Load Analysis
- 10. New Inelastic Hinge Type: Parametric P-M (multi-curve)
- **11. Precast Section DB: AS**
- 12. Response Spectrum Function: AS 5100.2: 2017
- 13. User-Defined Drying Basic Shrinkage Strain: AS 5100.5-2017
- 14. Relaxation of Tendons: AS 5100.5-2017
- 15. User-Defined Stress Limit for Crack Check: AS 5100.5-2017
- 16. Dynamic Load Allowance for Expansion Joint: AASHTO LRFD
- 17. Standard Vehicles: Indiana Department of Transportation
- 18. Standard Vehicles: Colombian CCP-14
- 19. Auto-Generation of Load Combination: BS 5400
- 20. Design Report in Czech
- 21. Response Spectrum Function: Philippines DPWH-BSDS 2013
- 22. India Material Database Update
- 23. IRS Load Combination
- 24. Prestressed Concrete Design by IRS Concrete Bridge Code

1. Maximum Number Limit of Erection Load Cases for Construction Stage Analysis

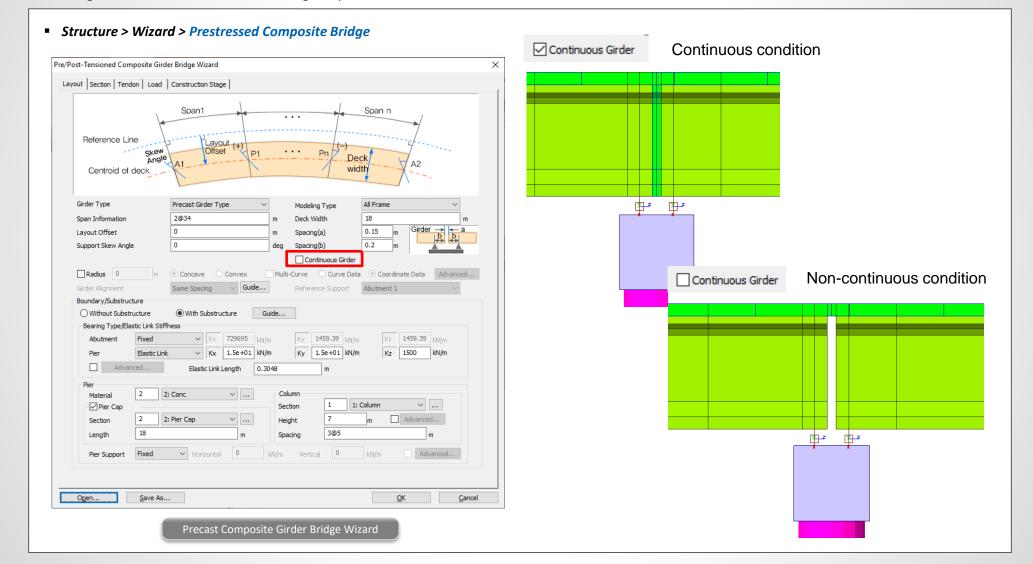
- Maximum limit in the number of erection load cases is increased from 5 to 10.
- More erection loads can be applied during construction stage and the results can be viewed with different erection load cases and hence different load factors in the load combination.

Analysis > Analysis Control > Construction Stage

nstruction Stage Analysis Control Data	×
Final Stage	Cable-Pretension Force Control
Last Stage Other Stage	Internal Force O External Force Add Replace
□ Restart Construction Stage Analysis Select Stages for Restart. Analysis Option Analysis type Linear Analysis Nonlinear Analysis Control ○ Independent Stage ④ Accumulative Stage Include Equilibrium Element Nodal Forces □ Include P-Delta Effect P-Delta Analysis Control ☑ Include Time Dependent Effect Time Dependent Effect Control ☑ Include Time Dependent Effect Time Dependent Effect Control Load Cases to be Distinguished from Dead Load for C.S. Output Ad No Load Case Name Type Q Erection Load 8 DW LC8 9 Erection Load 10 DW LC10 V Load No Load 10	Define Erection Load Image: Consider Stress Decrease at Leging Define Erection Load X Image: Consider Stress Decrease at Leging Load Case Image: Consider Stress Decrease at Leging Image: Constress Decrease at Leging Ima
	Save Output of Current Stage(Be OK Cancel
	Remove Construction Stage Analysis Control Data
	OK Cancel

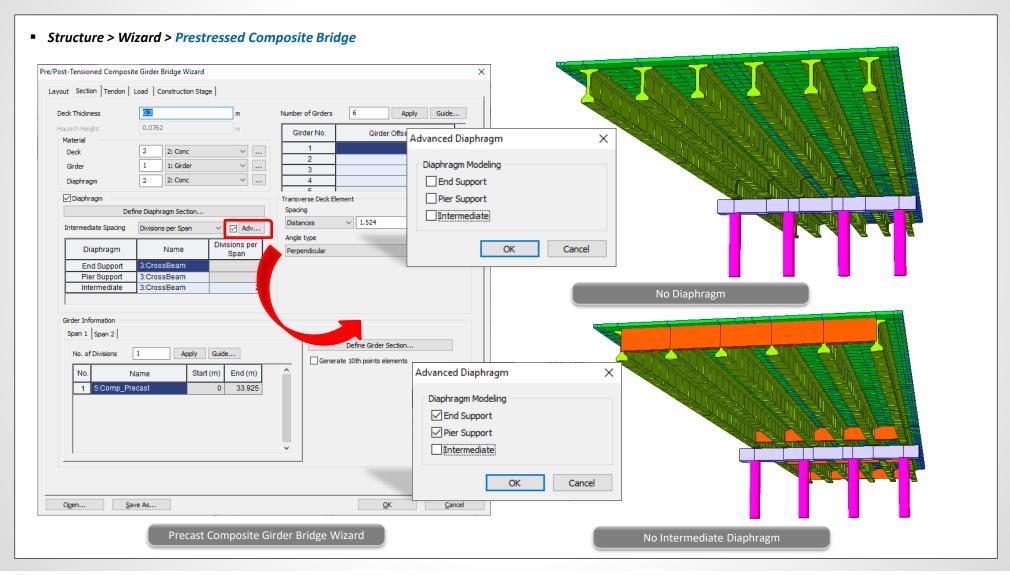
2. Multiple Modulus of Elasticity for Composite Prestressed Girder

- The modular ratio between slab concrete and girder concrete can be defined to determine the creep-transformed section properties of the composite section.
- The tendon and reinforcement are not taken into account to calculate the creep-transformed section properties and hence approximate stresses.
- Properties > Section > Composite

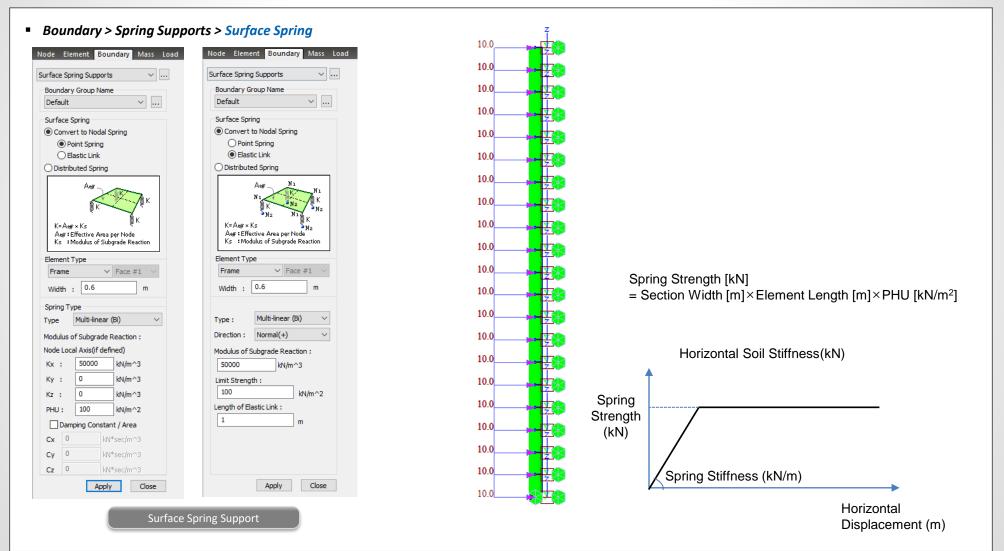

ection Data	:	×
DB/User Value SRC Com	oined PSC Tapered Composite Steel Girder	
Section ID 6	Name Composite	
Bc	Section Type : Composite-PSC Slab Bc 2000 mm tc 2000 mm Hh 0 mm	
	Girder PSC Value Type Import	
y.		
	Material	
Display Centroid	Select Material from DB Egd/Esb .13525 Dgd/Dsb 1	
◯ FEM ◯ Equation	Pgd 0.2 Psb 0.2	
	Multiple Modulus of Elasticity	
Offset : Center-Center	Egd/Esb (Creep) 3 Edg/Esb (Shrinkage) 2	
Change Offset	Consider Shear Deformation.	
Show Calculation Results	OK Cancel Apply	
Com	posite PSC section	

	Value(Before)	Value(After)	Long Term	Shrinkage	Unit
Area	5.490254e+005	9.013707e+005	6.823587e+005	7.490254e+005	mm^2
Asy	6.270599e+005	5.872924e+005	4.045292e+005	4.601618e+005	mm^2
Asz	4.422417e+005	3.684182e+005	3.279467e+005	3.290380e+005	mm^2
lxx	1.659530e+010	1.894427e+010	1.748419e+010	1.792864e+010	mm^4
lyy	1.195447e+011	3.360157e+011	2.276104e+011	2.672750e+011	mm^4
zz	1.230070e+010	1.297491e+011	5.674514e+010	7.896736e+010	mm^4
Сур	3.750000e+002	3.750000e+002	3.750000e+002	3.750000e+002	mm
Cym	3.750000e+002	3.750000e+002	3.750000e+002	3.750000e+002	mm
Czp	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
Czm	5.984106e+002	9.899313e+002	7.941218e+002	8.658486e+002	mm
Qyb	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm^2
Qzb	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm^2
Peri:0	4.314130e+003	8.714130e+003	8.714130e+003	8.714130e+003	mm
Peri:I	0.000000e+000	0.000000e+000	0.000000e+000	0.000000e+000	mm
Center:y	3.750000e+002	1.000000e+003	1.000000e+003	1.000000e+003	mm
Center:z	5.984106e+002	9.899313e+002	7.941218e+002	8.658486e+002	mm
y1	-1.200000e+002	-1.200000e+002	-1.200000e+002	-1.200000e+002	mm
z1	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
y2	1.200000e+002	1.200000e+002	1.200000e+002	1.200000e+002	mm
z2	9.015894e+002	5.100687e+002	7.058782e+002	6.341514e+002	mm
y3	3.500000e+002	3.500000e+002	3.500000e+002	3.500000e+002	mm
z3	-5.984106e+002	-9.899313e+002	-7.941218e+002	-8.658486e+002	mm
y4	-3.500000e+002	-3.500000e+002	-3.500000e+002	-3.500000e+002	mm
z4	-5.984106e+002	-9.899313e+002	-7.941218e+002	-8.658486e+002	mm

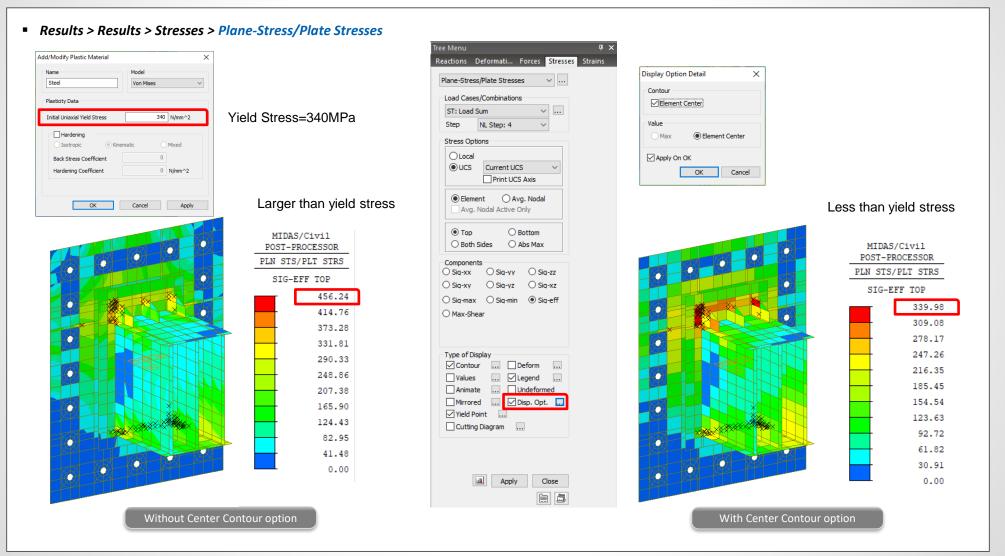
Creep Transformed Section Properties


3. Improvement in Prestressed Composite Bridge Wizard: Non-continuous Precast Beam

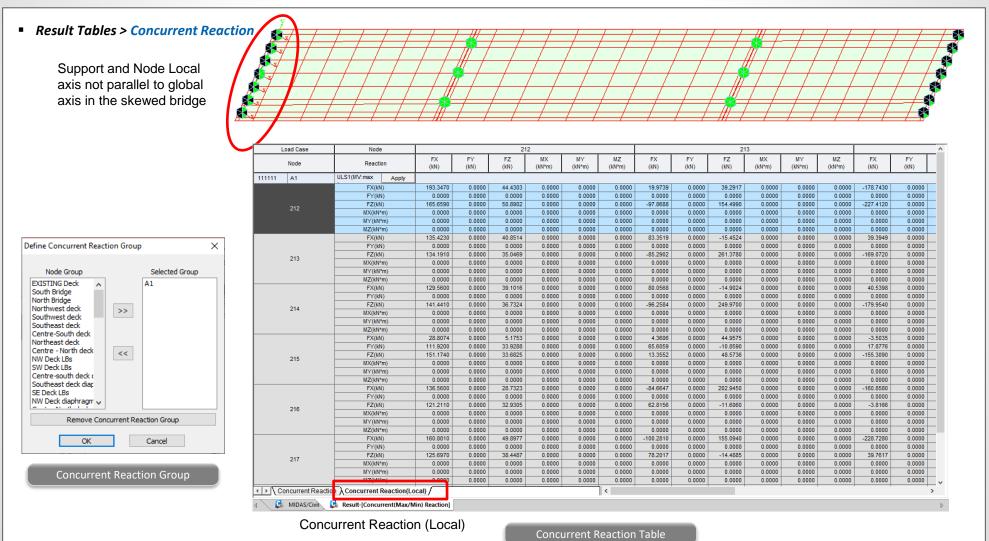
- New option is introduced to apply non-continuous condition for the precast beams between neighboring spans.
- Bending moment is released at the slab connecting two spans.


4. Improvement in Prestressed Composite Bridge Wizard: Diaphragm

Individual diaphragms can be included/excluded in the modeling of prestressed composite girder bridge.


5. Bilinear Type Spring Stiffness for Surface Spring Support

- Bilinear spring type is added in the Surface Spring Support to simulate the strength limit of the soil. The strength limit should be defined by the user.
- Both Point Spring Support and Elastic Link are supported.


6. Force/Stress Contouring based on Center Value of Plate Elements

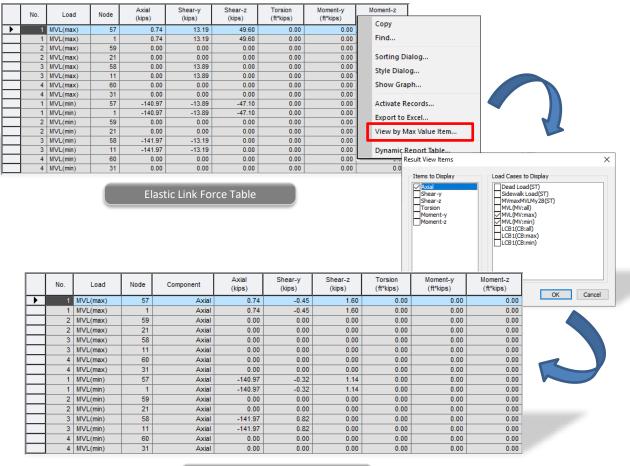
- Stresses at the node are determined by the linear interpolation of Gauss points, which often leads to stress exceeding yield stress in the material nonlinear analysis.
- Plate stress contour can now be displayed using the value at the element center instead of element nodes. The center values will not exceed the yield stress.

7. Concurrent Reactions of Moving Load Analysis with respect to Node Local Axis

- · Concurrent reactions due to moving load case can be viewed with respect to node local axis as well as global axis.
- This is useful to check concurrent reactions in the skewed bridges or horizontally curved bridges.

MIDAS

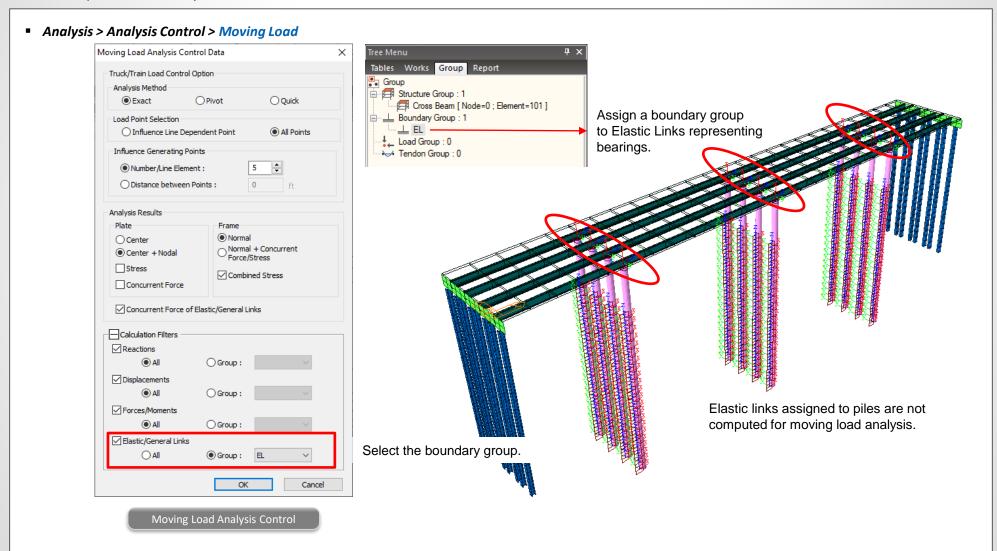
8. Concurrent Forces of Elastic Links and General Links for Moving Load Analysis


- Concurrent forces of Elastic Links and General Links are provided for the moving load analysis.
- This is useful when the bearings of the bridge are simulated using Elastic links.
- Analysis > Analysis Control > Moving Load,

Moving Load Analysis Contro	ol Data X
Truck/Train Load Control Op	tion
Analysis Method	
Exact) Pivot O Quick
Load Point Selection	
O Influence Line Depend	dent Point
- Influence Generating Points	S
Number/Line Element	: 5 🔺
O Distance between Poir	ints: 0 ft
Analysis Results	
Plate	Frame
() Center	Normal
Center + Nodal	Normal + Concurrent
Stress	Force/Stress
	Combined Stress
Concurrent Force	
Concurrent Force of Ela	astic/General Links
Calculation Filters	
Reactions	
() All	O Group :
✓ Displacements	
All	⊖ Group : ✓
Forces/Moments	
() All	⊖ Group : V
Elastic/General Links	<u> </u>
	Group : EL ✓
	⊕ Group : EL ✓
	OK Cancel

Moving Load Analysis Control

Result Tables > Elastic Link,


ink, Result Tables > General Link

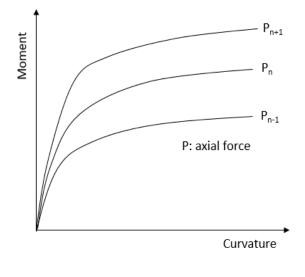
Concurrent Forces of Elastic Links

9. Analysis Filtering of Elastic Links and General Links in Moving Load Analysis

- The user can choose a group of Elastic Links and General Links to be analyzed for the moving load cases.
- This filter option makes the analysis time much shorter when there are a lot of Elastic Links / General Links in the model.

10. New Inelastic Hinge Type: Parametric P-M (multi-curve)

• Parametric P-M (multi-curve) is a new inelastic hinge type described by bending moment vs. curvature relationship which is a function of the axial force.


٠

• Unlike the other types of hinge, the moment vs. curvature relationship can be defined by the user depending on the axial forces.

Properties > Inelastic Properties > Inelastic Hinge

escription :						
Element Type		Material Type				
Beam-Column		RC/SRC(encased)				
◯ Truss	◯ General Link	O Steel/SRC(filled)				
Definition			Hinge Type			
O Moment - Rotation(M-Theta)		 Skeleton Model 				
Moment - Curvat	ure (M-Phi Distributed)		O Fiber Mo	del		
Interaction Type		Fiber Section				
○ None		O Auto Genera	tion ()	User Defined		
OP-M in Strength (Calculation	Section :		\sim		
OP-M-M in Status (Determination	Fiber Name :				
Parametric P-M (Multi-Curve)					
Component Propertie		/steresis Model				
Fx3		Kinematic Hardening	j v	Properties		
Fy 3		Kinematic Hardening	j –	Properties		
Fz 3		Kinematic Hardening	j 👻	Properties		
Mx 3		Kinematic Hardening	j 🔻	Properties		
⊠Му 3	F	-M Multi-Curve Typ	e 🔻	Properties		
Mz 3	F	P-M Multi-Curve Type	e 🔻	Properties		
	Yield S	urface Properties				
			Can	cel Apply		
		OK				

- The flexural behavior of the beam element is described by bending moment vs. curvature relationship. This relationship is input in the form of multilinear functions. The moment vs. curvature relationship is a function of the axial force.
 - The flexural behavior of the beam element is defined by two bending vs. curvature relationships, one for each principal plane of inertia.Interaction between the two bending moments (My and Mz) are not taken into account.

10. New Inelastic Hinge Type: Parametric P-M (multi-curve) continued

- Ultimate positive and negative curvature can be specified.
- This hinge type can be applied to nonlinear static or nonlinear time history analysis.
- Properties > Inelastic Properties > Inelastic Hinge

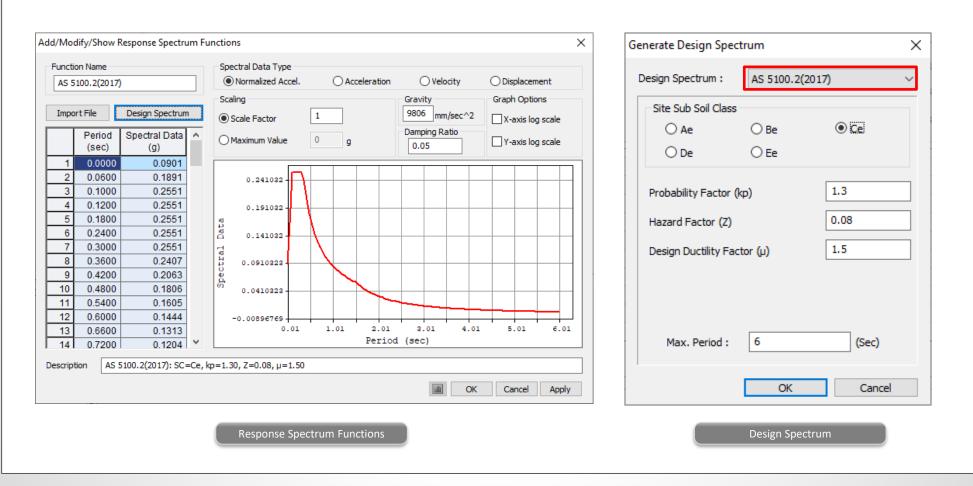
Multi-Ci	rve Data urve II vrce (P) 0.0	Define Axial Force	kN	Primary Curve
1ulti-Lir	near Force & Defo	ormation		
	Curvature (rad/m)	Moment (kN*m)	^	
1	-5.000e-001	-1.001e+003		
2	-1.000e-001	-1.000e+003		
3	0.000e+000	0.000e+000		
4	1.000e-001	1.000e+003		
5	5.000e-001	1.001e+003		Deformation Indexes
6				Strain Hardening Type
				Isotropic Kinematic
			-	O Mixed B 0
initial S	tiffness			
(n) [10000	kN*m^2		
(+)				
(-)	10000	kN*m^2		

٠

P-M Multi-Curve Type

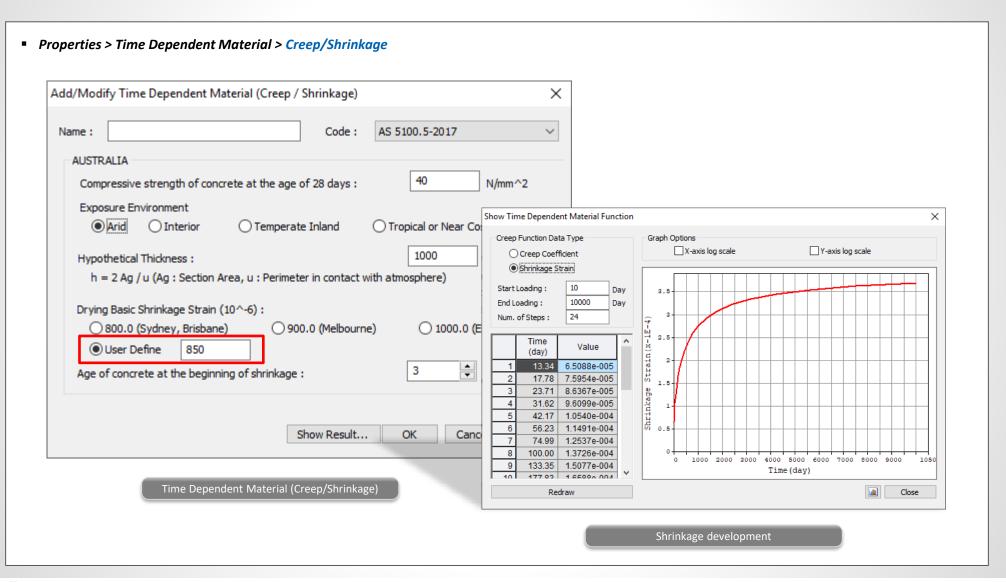
- P-M Multi-Curve Type allows for bilinear and multilinear plasticity.
- The first data point corresponds to negative rupture and the last data point corresponds to positive rupture. One data point the zero point must be at the origin. A different number of data points can be used for the positive and negative sections of the curve.
- Moment and curvature relationship can depend on the axial force and the dependence can be different in tension and in compression.The number of axial forces must be two at least.
- To obtain the bending moment-curvature curve for a level of axial force not input, interpolation is used. This interpolation is performed, not on the bending moment-curvature curves, but on the momentplastic curvature curves. The moment-plastic curvature curves are automatically calculated from the bending moment-curvature curves.
- Strain hardening can be isotropic, kinematic or mixed. The momentcurvature relationship can either be symmetric or non-symmetric. Whether it is symmetric or non-symmetric, entire moment-curvature curve should be entered.

11. Precast Concrete Girder Section Database Update: AS-Super T RMS 2019


- AS-Super T RMS 2019 T1, T2, T3, T4, T5
- This section database is also updated in the Tendon Template.
- Properties > Section > PSC

Section Data X	Select PSC DB ×
DB/User Value SRC Combined PSC Tapered Composite Steel Girder Section ID 1 PSC-Value v	Code AS V Type AS-Super-T_RMS_2019 Select DB
Name T1 Mesh Size for Stiff. Calc. mm Define by Coordinates Section Properties ^ Section Data Calc. Section Properties	2:T2 3:T3 4:T4 5:T5
Area 4.59271e+005 mm*2 Asy 1.98204e+005 mm*2 Image: Asy 1.28248e+005 mm*2 Image: Asy 1.28248e+005 mm*2 Image: Asy 1.02028e+010 mm*4 Image: Asy 1.02028e+011 mm*4 Cyp 1050.0000 mm Cyp 1050.0000 mm Cyp 141.9670 mm Cyp 350.0340 mm Qyb 270791.5445 mm*2	Auto Generation X Name prefix : strand Tendon Property : Tendon Tendon Group : Default Code : AS Type : AS-Super-T_RMS_2019 Name : T1 Origin Point : 0.970, 0.000
✓ Consider Shear Deformation Consider Warping Effect(7th DOF) Warping Check ● Auto ✓ Position Qy Auto Thk. for Shear(total) Auto 0 T1: 300 mm 0 Z2: Centroid 0 mm Z3: 600 Marco mm^3 2 Offset : Center-Center Change Offset Display Centroid	Ск AS-Super-T RMS 2019 DB
Show Calculation Results OK Cancel Apply Section Data	Tendon Template

12. Response Spectrum Function: AS 5100.2: 2017


• Response spectrum function as per AS 5100.2: 2017

Load > Response Spectrum Data > RS Functions

13. User-Defined Drying Basic Shrinkage Strain: AS 5100.5-2017

• The development of shrinkage strain can be defined using user-defined drying basic shrinkage strain as well as recommended values for each cities when applying AS 5100.5-2017.

14. Relaxation of Tendons: AS 5100.5-2017

- Prestress loss due to the relaxation of tendon is calculated as per equation 3.3.4.3 of AS 5100.5-2017 using user-defined basic relaxation, Rb.
- Rb(%) is the basic % relaxation of a tendon at 1,000 hour.
- Load > Load Type > Temp./Prestress
- Load > Prestress Loads > Tendon Property

Add/Modify Tendon Property			×
Tendon Type			
Tendon Name		Тор	
Tendon Type		Internal(Post-Tension)	\sim
Material	3	3: 1850S	~
Total Tendon Area		2774	mm^2
Duct Diameter		0	mm
Relaxation Coefficient		AS 5100.5-2017 V Rb(%	6) 2.5
Characteristic Value of Strength (fpb)		1850	N/mm^2
Curvature Friction Factor		0.3]
Wobble Friction Factor		6.6e-006	1/mm
External Cable Moment Magnifier		0	N/mm^2
Anchorage Slip(Draw in)		Bond Type	
Begin : 6 mm		Bonded	
End : 6 mm			
		OK Cancel	Apply
Tond	on Prone	orty.	

3.3.4.2 Basic relaxation

The basic relaxation of a tendon (R_b) after one thousand hours at 20°C and 0.8 f_{pb} shall be determined in accordance with AS/NZS 4672.1.

3.3.4.3 Design relaxation

Subject to Clause 3.3.4.4, the design relaxation of a tendon (R) shall be determined from the following equation:

$$R = k_6 k_7 k_8 R_b \qquad \dots 3.3.4.3$$

where

- k_6 = a coefficient, dependent on the duration of the prestressing force
 - $= \log [5.4(j)^{1/6}]$
 - j = time after prestressing, in days
- k_7 = a coefficient, dependent on the stress in the tendon as a proportion of f_{pb} , determined from Figure 3.3.4.3
- k_8 = a coefficient, dependent on the average annual temperature (*T*) in degrees Celsius, taken as *T*/20 but not less than 1.0
- R_b = basic relaxation of a tendon after one thousand hours at 20°C, as specified in Clause 3.3.4.2

AS 5100.5-2017 Specification

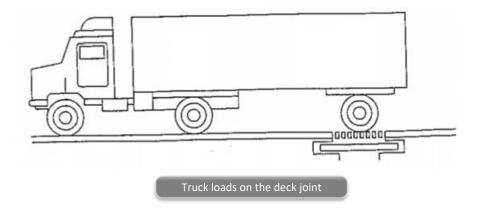
15. User-Defined Stress Limit for Crack Check: AS 5100.5-2017

- For the crack control for flexure in prestressed beams, the maximum increment of steel stress was fixed as 160 MPa in the previous version.
- Now, it can be defined by the user.
- PSC > Design Parameter > AS 5100.5: 17

PSC Design Parameters Design Code : AS 5100.5:17 ~	×	
Input Paramaters Maximum nominal aggregate size (8.2.4.2) d_g: 16 mm	Crack Control Maximum Increment of Steel Stress 160 N/mm^2	
Output Paramaters Ultimate limit states Flexural resistance Torsional resistance PSC	Serviceability limit state Control of Cracking Select All Unselect All OK Cancel Design parameter	
		Super T Girder Bridge

16. Dynamic Load Allowance for Expansion Joint: AASHTO LRFD

- Dynamic load allowance is defined in the Vehicle dialog in the moving load analysis by AASHTO LRFD.
- Different dynamic load allowance can now be applied to a separate structure group using this new feature.
- Load > Load Type > Moving Load > Moving Load Code > AASHTO LRFD
- Load > Moving Load Analysis Data > Dynamic Load Allowance

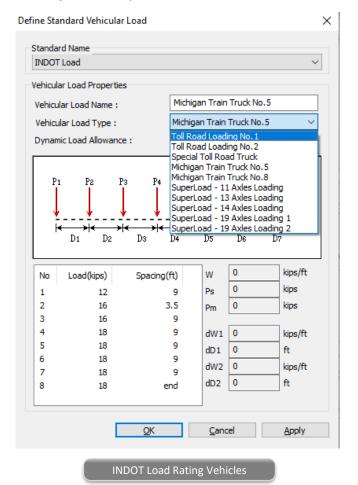

Dynamic Load Allowance	×
Select Structure Group	
Cross Beam 1 Deck Joints	
Deck Joint IM 75 %	
Add Modify Delete	
Group List Factor	r
Deck Joints 75	
Close	

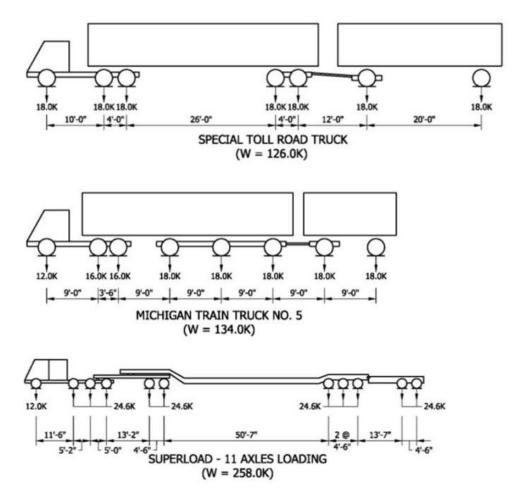
Dynamic Load Allowance

Table 3.6.2.1-1—Dynamic Load Allowance, IM

Component	IM
Deck Joints—All Limit States	75%
All Other Components:	
Fatigue and Fracture Limit State	15%
All Other Limit States	33%

AASHTO LRFD Specification


MIDAS


17. Standard Vehicles: Indiana Department of Transportation

- Toll Road Loading No.1, Toll Road Loading No.2, Special Toll Road Truck, Michigan Train Truck No.5, Michigan Train Truck No.8
- SUPERLOAD 11 Axles Loading, SUPERLOAD 13 Axles Loading, SUPERLOAD 14 Axles Loading, SUPERLOAD 19 Axles Loading 1, SUPERLOAD 19 Axles Loading 2

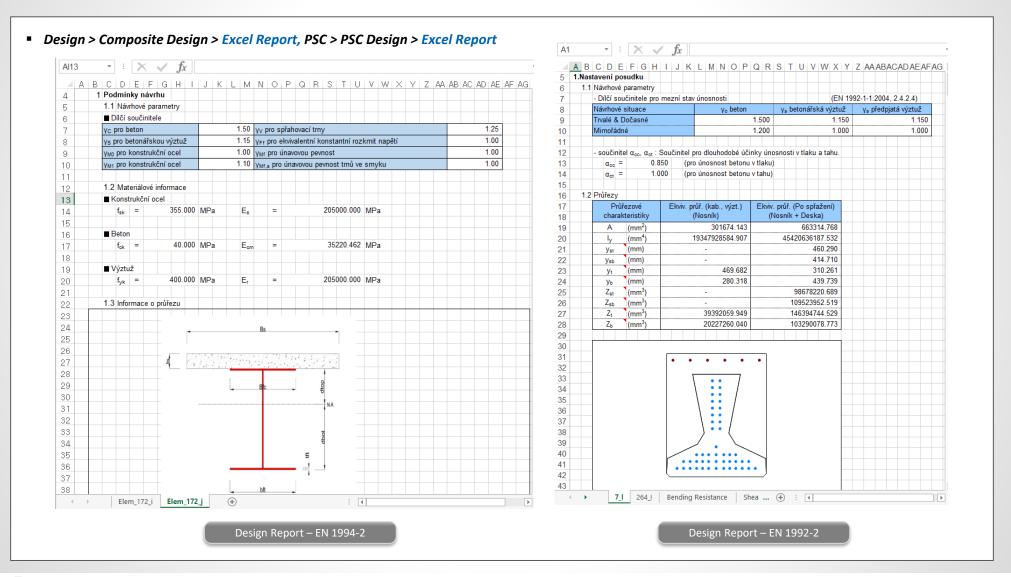
Load > Load Type > Moving Load > Moving Load Code > AASHTO LRFD

Load > Moving Load Analysis Data > Vehicles

18. Standard Vehicles: Colombian CCP-14

CCP-14 Truck, CCP-14 Tandem

19. Auto-Generation of Load Combination: BS 5400


• Auto-generation of load combinations with respect to BS 5400 is now available for concrete structures.

Results > Load Combination

	lo Name	Active	Tune	Description ^		LoadCase	Factor ^	○ Steel
			Type Add	· · · · · · · · · · · · · · · · · · ·			Factor	Design Code : BS 5400 V
-	1 gLCB1	Active		ULS Comb 1: 1.32D+1.	Ľ	5(61)	1.3200	Manipulation of Construction Stage Load Case
	2 gLCB2	Active	Add	ULS Comb 1: 1.32D+1.		DW(ST)	1.9250	O ST Only O CS Only ● ST+CS
	3 gLCB3	Active	Add	ULS Comb 1: 1.32D+1.		DC(ST)	1.3200	ST : Static Load Case CS : Construction Stage
	4 gLCB4	Active	Add	ULS Comb 1: 1.32D+1.		EV(ST)	1.3200	Bridge Type Roadway 🗸
	5 gLCB5	Active	Add	ULS Comb 2: 1.32D+1.		EP(ST)	1.6500	Load Factors for Permanent Loads
	6 gLCB6	Active	Add	ULS Comb 2: 1.32D+1.		EH(ST)	1.6500	Type of Load Load Factor
	7 gLCB7	Active	Add	ULS Comb 2: 1.32D+1.		STL(ST)	1.3200	Max Min Both
	8 gLCB8	Active	Add	ULS Comb 2: 1.32D+1.		Settlement(SM)	1.3200	Dead Load
	9 gLCB9	Active	Add	ULS Comb 2: 1.32D+1.		PS(ST)	1.1000	Deck Surfacing(DW) 1.75 1.20 Other Loads(DC) 1.20 1.20 1.20
	10 gLCB1		Add	ULS Comb 2: 1.32D+1.		CR(ST)	1.3200	
	11 gLCB1	Active	Add	ULS Comb 2: 1.32D+1.		SH(ST)	1.3200	Vertical Earth Pressure
	12 gLCB12	2 Active	Add	ULS Comb 2: 1.32D+1.		Dead Load(CS)	1.3200	Non-vertical Earth Pressure
	13 gLCB1	3 Active	Add	ULS Comb 2: 1.32D+1.		Tendon Secondary(CS)	1.1000	Partial Safety Factor for Moving Load
	14 gLCB14	Active	Add	ULS Comb 2: 1.32D+1.	*	÷		Road Traffic Case : HB 🗸
	15 gLCB1	Active	Add	ULS Comb 2: 1.32D+1.				BS Vehicle Type : HB alone 🗸
	16 gLCB1	6 Active	Add	ULS Comb 2: 1.32D+1.				BS Vehicle Partial Factor Table
	17 gLCB1	Active	Add	ULS Comb 2: 1.32D+1.				bo venice Partian actor fable
	18 gLCB1	3 Active	Add	ULS Comb 2: 1.32D+1.				Load Case Vehicle Name
	19 aLCB1	Active	Add	ULS Comb 2: 1.32D+1.				HA HA alone
	20 gLCB2) Active	Add	ULS Comb 2: 1.32D+1.				HA&HB HA with HB HB HB alone
	21 gLCB2	Active	Add	ULS Comb 2: 1.32D+1.				
	22 gLCB2		Add	ULS Comb 2: 1.32D+1. V			~	Add Delete
	15	1			-			Partial Load Factor for Inaccurate Load Effect
								For Ultimate Limit State 1.10
Сору	I	mport	Auto Gene	eration Spread Sheet Fo	rm	Copy into Steel Design	~	For Service Limit State 1.00
								For Service Limit State

20. Design Report in Czech

• The design reports are provided in Czech for the composite steel girder design and prestressed concrete girder design as per Eurocode.

21. Response Spectrum Function: Philippines DPWH-BSDS 2013

- Department of public works and highways bridge seismic design specifications 2013, Philippines
- Load > Response Spectrum Data > RS Functions

Function Name	Spectral Data Type		Generate Design Spectrum
DPWH-LRFD BSDS(2013)	Normalized Accel. Acceleration		Design Spectrum : DPWH-LRFD BSDS(2013) V
Import File Design Spectrum Period Spectral Data ^ (sec) (g)	Scaling Scale Factor Maximum Value g	Gravity Graph Option 9806 mm/sec^2 X-axis log Damping Ratio 0.05 Y-axis log	scale Ground Type
1 0.0000 0.5000 2 0.0600 0.7357 3 0.1200 0.9714 4 0.1527 1.1000 5 0.1800 1.1000 6 0.2400 1.1000 7 0.3000 1.1000 8 0.3600 1.1000 9 0.4200 1.1000 10 0.4800 1.1000 11 0.5400 1.1000 12 0.6000 1.1000	1.092 0.992 0.892 0.692 0.692 0.692 0.692 0.592 0.592 0.592 0.592 0.192 0.192 0.192 0.192		Peak Ground Acceleration Coefficient 0.5 (PGA) Spectral Acceleration Coefficient at Period 0.2 sec (Ss) 1.1 Spectral Acceleration Coefficient at 0.6 Period 1.0 sec (S1) Response Modification Factor (R)
12 0.3000 1.1000 13 0.6600 1.1000 14 0.7200 1.1000	0.092	3.01 4.01 5.01 d (sec)	6.01 Max. Period : 6 (Sec)
cription DPWH-LRFD BSDS(2013): G	T=I, PGA=0.50, Ss=1.10, S1=0.60, RMF=1.00		
		OK Cancel	Apply OK Cancel
	Response Spectrum Functions		Design Spectrum

22. India Material Database Update

- Concrete: IRC:112-2011, IRS Concrete Bridge Code
- Properties > Material > Concrete

terial Data				
General				
Material ID 1		Name		
Elasticity Data				
-		Steel		
Type of Design Concre	ete 🗸	Standard		\sim
		DB		~
		Cananata		
		Concrete Standard	IRC(RC)	~
Type of Material		Stanuaru		
Isotropic	Orthotropic		Code	~
		DB	I M15	~
Steel	0.0000-1000		M20	
Modulus of Elasticity :	0.0000e+000	kN/m^2	M25 M30	
Poisson's Ratio :	0		M35	
Thermal Coefficient :	0.0000e+000	1/[C]	M40 M45	
Weight Density :	0	kN/m^3	M50 M55	
Use Mass Density:	0	kN/m^3/g	M60	
			M65 M70	
Modulus of Elasticity :	3.4312e+007	kN/m^2	M75	
Poisson's Ratio :	0.2	MA/III 2	M80 M85	
			M90	
Thermal Coefficient :	1.2000e-005	1/[C]		
Weight Density :	25	kN/m^3		
Use Mass Density:	2.549	kN/m^3/g		

General				
Material ID 1		Name		
lasticity Data				
Type of Design Concr	ete 🗸 🗸	Steel		
		Standard		~
		DB		
		Concrete		
		Standard	IRS(RC)	\sim
Type of Material	Outh a bannin		Code	\sim
Isotropic	Orthotropic	DB		~
Steel			M20 M25	
Modulus of Elasticity :	0.0000e+000	kN/m^2	M30	
Poisson's Ratio :	0		M35 M40	_
Thermal Coefficient :	0.0000e+000	1/[C]	M45 M50	
Weight Density :	0	kN/m^3	M55 M60	
Use Mass Density:	0	kN/m^3/g	1100	
Concrete				
Modulus of Elasticity :	3.1000e+007	kN/m^2		
Poisson's Ratio :	0.2			
Thermal Coefficient :	1.1700e-005	1/[C]		
Weight Density :	25	kN/m^3		
Use Mass Density:	2.549	kN/m^3/g		

23. IRS Load Combination

- Load combination can now be auto-generated based on recommendations in IRS Concrete Bridge Code, including derailment loads
- These load combination could be used for IRS PSC design

Results > Load Combination

	No	Name	Active	Туре	E	Description ^		LoadCase	Factor ^
•	1	cLCB1	Strengt	Add	Г	1U:D:SIDL:SM:EP:F	•	Dead 1(ST)	1.2500
	2	cLCB2	Strengt	Add	Г	1U:D:SIDL:SM:rEP:		Bouyancy(ST)	2.0000
	3	cLCB3	Strengt	Add	Г	2U:D:SIDL:SM:W		Dead DC(ST)	2.0000
	4	cLCB4	Strengt	Add	Г	2U:D:SIDL:SM:rW		Dead DW(ST)	2.0000
	5	cLCB5	Strengt	Add	Г	2U:D:SIDL:SM:W:FI		Pavement(ST)	2.0000
	6	cLCB6	Strengt	Add	Г	2U:D:SIDL:SM:rW:F		Ballast(ST)	2.0000
	7	cLCB7	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Settlement(ST)	1.0000
	8	cLCB8	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Earth Pressure(ST)	1.7000
	9	cLCB9	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Horizontal EP(ST)	1.7000
	10	cLCB10	Strengt	Add	Г	2U:D:SIDL:1.6RS(X)		Vertical EP(ST)	1.7000
	11	cLCB11	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		Earth Surcharge(ST)	1.7000
	12	cLCB12	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		Ground Water Pressure(ST)	1.7000
	13	cLCB13	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		LL Surcharge(ST)	1.7000
	14	cLCB14	Strengt	Add	Г	2U:D:SIDL:-1.6RS(X		FPLL(ST)	1.5000
	15	cLCB15	Strengt	Add	Г	2U:D:SIDL:0.48RS()		Live Load(ST)	1.7500
	16	cLCB16	Strengt	Add		2U:D:SIDL:0.48RS()		Centrifugal(ST)	1.7500
	17	cLCB17	Strengt	Add		2U:D:SIDL:-0.48RS(Braking(ST)	1.7500
	18	cLCB18	Strengt	Add		2U:D:SIDL:-0.48RS(SET(SM)	1.0000
	19	cLCB19	Strengt	Add		2U:D:SIDL:0.48RS()		MVLC(MV)	1.7500
		cLCB20	Strengt	Add	Г	2U:D:SIDL:0.48RS()	*		
	21	cLCB21	Strengt	Add	Г	2U:D:SIDL:-0.48RS(v			
<						>			¥
Co	ру	Im	port	Auto Gene	eratio	n Spread Sheet For	rm		
	_								
Name	:	G:\Beta Tes	ting\IRS Load	Combinations\S	Sample	e Model_in Browse		Make Load Combination Sheet	Close

Automatic Generation of Loa	d Combinations X
Option	
	○ SRC ○ Steel Composite
Manipulation of Construction O ST Only O CS O ST : Static Load Case O	-
Ultimate State Option Consider Creep, Shrinkag ULS Load Combination	e and Differential Temperature for
Partial Safety Factor for Diff Ultimate State	ferential Settlement Service State
Load Case for Derailment	ls
	OK Cancel
Derailment Load Cases	×
Ultimate Limit State	Serviceability Limit State
DeRaiL1 DeRaiL2 DeRaiL3	-> <-

24. Prestressed Concrete Design by IRS Concrete Bridge Code

• Prestressed concrete girder design by IRS Concrete Bridge Code is now available.

View Structure Node/Element Properties Boun	dary Load Analysis Result	s PSC	Pushover
PSC Design Material 🔤 PSC	Segment Assignment	Result 1	
	osure Class		4.Torsional Resistance
	Perform Excel		
📴 Serviceability Load Combination Type 🚡 Tors	ion & Interface Shear Design Report	SC Re	1 Design Load
Design Parameter PSC Design Data	PSC Design	PSC Des	Load Combination Name : ULS1
		~	Design Situations :
SC Design Parameters		×	Load Combination Type :
Design Code : IRS			N _{Ed} = -18066.337 kN V _{Ed} = -244.386 kN
in the second se		-	$T_{Ed} = 293.826 \text{ kN} \cdot \text{m}$
Input Parameters			$M_{Ed} = 39746.713 \text{ kN} \cdot \text{m}$
Design Parameters (Ultimate limit states)			
Moment resistance Consider tendons in tensile zone Consider all tendons	Prestressing Steel Type		- Design strength of concrete (IRS,6.4.2.8)
Consider tendons in tensile zone	 Smooth bars and wires 	_	$f_{cd} = \alpha_{cc} \cdot f_{ck} / \gamma_c$ = 17.867 MPa
User Input Data Modify design parameters	○ Strands	-	
Construction Type			- Design strength of Reinforcement (IRS,6.2.2) f _{vd} = f _{vk} / y _s rebar = 434.783 MPa
O Segmental Non-Segmental			
() segmentai			2 Check Torsional Resistance
Output parameters			Closed Section Part
Ultimate limit states			- Design Parameters (IRS, 10.5.2)
			$v_{t} = T / (2 \cdot h_{wo} \cdot A_{o}) = 0.024$ MPa (IRS CBC 15.4.4.4, Equa
	ion at a construction stage	-	Where, v. = Torsional Stress
Shear resistance Stress for cross sect	on at service loads	-	T = T _{Fd}
✓ Torsional resistance ✓ Principal stress at a	construction stage	-	h_{wp} = wall thickness for torsion = 400.077 mm
✓ Principal stress at se	rvice loads	-	A_{o} = area enclosed by median wall line = 15612913.33 mm ²
✓ Tensile stress for pr	stressing steel		
	So essing steel		v _{t,min} = Minimum torsional resistance = 0.420 MPa (IRS CBC, Table 17)
Crack control		_	$\geq v_t$ Torsional R/F not requi
	Select All Unselect All		v _{ts} = V / (b · d) = 0.039 MPa (IRS CBC 15.4.3.1, Equa
	Select All Oriselect All	-	V _{ts} = V / (b · d) = 0.039 MPa (IRS CBC 15.4.3.1, Equa
			Vise = Shear stress in section
	OK Cancel		$V = V_{Ed} = -244.386 \text{ kN}$